On The Behavior of Subgradient Projections Methods for Convex Feasibility Problems
نویسندگان
چکیده
We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy that controls the relaxation parameters in a specific manner leaves enough user-flexibility but gives a mathematical guarantee for the algorithm’s behavior in the inconsistent case. We present numerical results of computational experiments that show the computational advantage of the method.
منابع مشابه
On The Behavior of Subgradient Projections Methods for Convex Feasibility Problems in Euclidean Spaces
We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm's behavior in t...
متن کاملSeminorm-Induced Oblique Projections for Sparse Nonlinear Convex Feasibility Problems
Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using...
متن کاملZero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods
The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projecti...
متن کامل"Efficient" Subgradient Methods for General Convex Optimization
A subgradient method is presented for solving general convex optimization problems, the main requirement being that a strictly-feasible point is known. A feasible sequence of iterates is generated, which converges to within user-specified error of optimality. Feasibility is maintained with a linesearch at each iteration, avoiding the need for orthogonal projections onto the feasible region (an ...
متن کاملConvex feasibility modeling and projection methods for sparse signal recovery
A computationally-efficient method for recovering sparse signals from a series of noisy observations, known as the problem of compressed sensing (CS), is presented. The theory of CS usually leads to a constrained convex minimization problem. In this work, an alternative outlook is proposed. Instead of solving the CS problem as an optimization problem, it is suggested to transform the optimizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007